You can easily use multiple custom shaders in Bottomless-Pit with diffrent uniforms. This example features 2 diffrent shaders, one that uses the mouse position to change the colour of a rectangle. The other shader uses the time to offset the postion by sine and cosine of time.
use std::f32::consts::PI;
use bottomless_pit::colour::Colour;
use bottomless_pit::engine_handle::{Engine, EngineBuilder};
use bottomless_pit::material::{Material, MaterialBuilder};
use bottomless_pit::render::RenderInformation;
use bottomless_pit::shader::{Shader, UniformData};
use bottomless_pit::vectors::Vec2;
use bottomless_pit::Game;
use encase::ShaderType;
fn main() {
let mut engine = EngineBuilder::new()
.set_clear_colour(Colour::WHITE)
.build()
.unwrap();
let mouse_shader = Shader::new("examples/mouse.wgsl", true, &mut engine);
let circle_shader = Shader::new("examples/movement.wgsl", true, &mut engine);
let data = MousePos {
x: 0.0,
y: 0.0,
_junk: 0.0,
_padding2: 0.0,
};
let mouse_uniform_data = UniformData::new(&engine, &data);
// On wasm we need this to be 16 bytes aligned so we have added this instead of
// a 0.0_f32
let circle_uniform_data = UniformData::new(&engine, &data);
let mouse_material = MaterialBuilder::new()
.set_shader(mouse_shader)
.set_uniform(&mouse_uniform_data)
.build(&mut engine);
let circle_material = MaterialBuilder::new()
.set_shader(circle_shader)
.set_uniform(&circle_uniform_data)
.build(&mut engine);
let defualt_material = MaterialBuilder::new().build(&mut engine);
let game = ShaderExample {
data,
mouse_material,
circle_material,
defualt_material,
theta: 0.0,
};
engine.run(game);
}
#[derive(ShaderType)]
struct MousePos {
x: f32,
y: f32,
_junk: f32,
_padding2: f32,
}
struct ShaderExample {
mouse_material: Material,
circle_material: Material,
defualt_material: Material,
data: MousePos,
theta: f32,
}
impl Game for ShaderExample {
fn render<'pass, 'others>(
&'others mut self,
mut render_handle: RenderInformation<'pass, 'others>,
) where
'others: 'pass,
{
self.mouse_material.add_rectangle(
Vec2 { x: 0.0, y: 0.0 },
Vec2 { x: 100.0, y: 100.0 },
Colour::RED,
&render_handle,
);
self.circle_material.add_rectangle(
Vec2 { x: 100.0, y: 100.0 },
Vec2 { x: 100.0, y: 100.0 },
Colour::RED,
&render_handle,
);
self.defualt_material.add_rectangle(
Vec2 { x: 0.0, y: 200.0 },
Vec2 { x: 100.0, y: 100.0 },
Colour::RED,
&render_handle,
);
self.mouse_material.draw(&mut render_handle);
self.circle_material.draw(&mut render_handle);
self.defualt_material.draw(&mut render_handle);
}
fn update(&mut self, engine_handle: &mut Engine) {
let dt = engine_handle.get_frame_delta_time();
self.theta = (self.theta + dt) % (2.0 * PI);
let size = engine_handle.get_window_size();
let mouse_pos = engine_handle.get_mouse_position();
let new_data = MousePos {
x: mouse_pos.x / size.x as f32,
y: mouse_pos.y / size.y as f32,
_junk: 0.0,
_padding2: 0.0,
};
self.data = new_data;
self.mouse_material
.update_uniform_data(&self.data, &engine_handle);
self.circle_material
.update_uniform_data(&self.theta, &engine_handle);
}
}
struct EngineUniforms {
camera: mat3x3<f32>,
screen_size: vec2<f32>,
}
@group(1) @binding(0)
var<uniform> engine: EngineUniforms;
struct MousePos {
stuff: vec2<f32>,
_junk: vec2<f32>,
}
@group(1) @binding(0)
var<uniform> camera: EngineUniforms;
@group(2) @binding(0)
var<uniform> mouse: MousePos;
struct VertexInput {
@location(0) position: vec2<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) colour: vec4<f32>
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) colour: vec4<f32>,
}
// vertex shader
@vertex
fn vs_main(model: VertexInput) -> VertexOutput {
var out: VertexOutput;
var pos: vec3<f32> = engine.camera * vec3<f32>(model.position, 1.0); // the vectors on the right the matrices go on the left in order of importance
pos = pos / pos.z;
pos.x = 2.0 * pos.x / engine.screen_size.x - 1.0;
pos.y = ((2.0 * pos.y / engine.screen_size.y) - 1.0) * -1.0;
out.clip_position = vec4(pos.xy, 0.0, 1.0);
return out;
}
// Fragment shader
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let pain = mouse.stuff;
return vec4(pain.x, pain.y, 1.0, 1.0);
}
struct EngineUniforms {
camera: mat3x3,
screen_size: vec2,
}
@group(1) @binding(0)
var<uniform> engine: EngineUniforms;
struct Time {
time: f32,
_junk: f32,
_junk1: f32,
_junk4: f32,
}
@group(1) @binding(0)
var<uniform> camera: EngineUniforms;
@group(2) @binding(0)
var<uniform> time: Time;
struct VertexInput {
@location(0) position: vec2<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) colour: vec4<f32>
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) colour: vec4<f32>,
}
// vertex shader
@vertex
fn vs_main(model: VertexInput) -> VertexOutput {
var out: VertexOutput;
out.tex_coords = model.tex_coords;
var pos: vec3<f32> = engine.camera * vec3<f32>(model.position.x + sin(time.time) * (engine.screen_size.x / 2.0), model.position.y + cos(time.time) * (engine.screen_size.y / 2.0), 1.0); // the vectors on the right the matrices go on the left in order of importance
pos = pos / pos.z;
pos.x = 2.0 * pos.x / engine.screen_size.x - 1.0;
pos.y = ((2.0 * pos.y / engine.screen_size.y) - 1.0) * -1.0;
out.clip_position = vec4(pos.xy, 0.0, 1.0);
out.colour = model.colour;
return out;
}
// Fragment shader
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4 <f32> {
return in.colour;
}